

Plant nutritional needs of Buchu (*Agathosma betulina*):

Effect of nutrient solution concentration on plant growth and essential oil quality

Dr Petrus Langenhoven
(ASNAPP South Africa)
Dr M.W. Esterhuysen
(Puris Natural Fine Chemicals (Pty) Ltd)

Introduction

- This crop actually needs no introduction
- High value and high in demand
- However yield can be optimized if fertilizer is applied at optimum levels and at the rite time
- No clear guidelines available
- Relatively new crop very little agronomic research has been done
- Fertilizer recommendations will take several years of research before it will be finalized

Material and Method

- Naturally ventilated greenhouse
- Hydroponic techniques applied to test hypothesis
- Soil-less substrate used graded sand
- Nutrient solution
- Treatments
 - Five EC (mS.cm⁻¹) levels were used:
 - 0.8
 - 1.1
 - 1.4
 - 1.7
 - · 2.0
- Replicates: 5
- Plants per treatment: 10

Material and Method Cont.

- Seedlings obtained from Piketberg
- Pot size & Growth medium
 - 5L white pot
 - Grade 1 sand obtained from Consol
- Irrigation:
 - Netafim button dripper
 - 6 to 9 x per day
 - 50 to 100ml irrigated per cycle. Drainage % was exceptionally high and therefore the high irrigation volume
- Nutrient solution
 - Macro elements solution as used by Mr Harris
 - Micro nutrients based on Steiner solution
 - Plants received nutrition with every irrigation

Nutrient Solution

		Cations								
	Na ⁺	NH_4^+	K +	Ca++	Mg ⁺⁺	H+				
me.l ⁻¹	0.27	0.7	3.31	2.45	1.54					
ppm	6	10	129	49	18					

		Anions									
	OH-	NO ₃ -	H ₂ PO ₄ -	SO ⁴⁼	Cl-	HCO ₃ -					
me.l ⁻¹		5.51	0.7	1.44	0.57	0.14					
ppm	. h.	77	22	23	20						

Material and Method Cont.

- Plant date: 26 September 2003
- Harvest dates:
 - July 2004 (10 months after planting)
 - April 2005 (9 months later)
- Data collected:
 - EC/pH values
 - Irrigation water
 - Drainage water
 - Biomass produced
 - Oil yield & quality

Photo: 13 Oct 2003

Material and Method Cont.

• Distillation:

- Clevenger steam extraction
- Extraction time was 2 hrs from the time steam has started to form

• Analysis:

- Gas chromatography
- Results are reported on in terms of relative percentages of the total composition, obtained from the integrated peak areas on the chromatogram
- When diosphenol crystallizes, it is heated to ~50°C
 before the GC analysis is executed

Preliminary Results

	рН	EC	Na ⁺	NH ₄ ⁺	K +	Ca++	Mg ⁺⁺	H +
Municipal water	8.7	0.07	0.21	0.00	0.01	0.25	0.04	
EC = 0.8	6.7	0.76	0.28	0.87	2.78	1.78	1.22	
EC = 1.1	6.6	1.00	0.29	1.29	3.79	2.36	1.61	
EC = 1.4	6.4	1.33	0.33	1.68	5.15	2.97	2.11	
EC = 1.7	6.2	1.60	0.35	2.03	6.06	3.69	2.59	
EC = 2.0	6.2	2.00	0.40	2.63	7.83	4.97	3.11	I

Preliminary Results

	Anions (me/L)								
	OH-	NO ₃ -	H ₂ PO ₄ -	SO ⁴⁼	Cl-	HCO ₃ -			
Municipal		0.04	0.00	0.04	0.24	0.40			
water		0.01	0.00	0.01	0.34	0.42			
EC = 0.8		4.53	0.45	1.14	0.39	0.50			
EC = 1.1		6.61	0.58	1.52	0.40	0.51			
EC = 1.4		8.74	0.79	2.05	0.43	0.55			
EC = 1.7		10.68	0.92	2.42	0.45	0.54			
EC = 2.0		14.42	1.12	2.94	0.53	0.57			

Preliminary Results

Treatment	рН	EC
EC = 0.8 mS.cm ⁻¹	5.7	0.85
EC = 1.1 mS.cm ⁻¹	5.5	1.10
EC = 1.4 mS.cm ⁻¹	5.3	1.40
EC = 1.7 mS.cm ⁻¹	5.4	1.69
EC = 2.0 mS.cm ⁻¹	5.3	1.98

Results: Yield

	EC (mS.cm ⁻¹)									
	0.8	1.1	1.4	1.7	2.0					
Oil yield (v/m%)	0.74	0.74	0.68	0.65	0.69					
Fresh weight per plant (g)	538.3	514.6	468.4	355.4	255.4					
Volume oil per plant (ml)	3.96	3.80	3.18	2.28	1.90					

Plant growth

Agribusiness in Sustainable Natural African Plant Products

2 weeks after planting

40
weeks
after
planting

Plant growth

Results: Oil Quality

			*	-				
		EC (mS.cm ⁻¹)						
Chemical component	0.8	1.1	1.4	1.7	2.0	Accepted range		
Limonene (%)	26.46	24.74	25.32	26.28	24.96	25-30%		
Menthone (%)	4.32	4.30	4.10	4.30	3.94	5-10%		
Isomenthone (%)	14.20	14.76	13.48	14.10	13.36	15-25%		
Pulegone (%)	6.62	12.48	9.26	9.64	11.82	0-5%		
psi-Diosphenol (%)	11.48	7.90	10.00	7.42	8.84	8-13%		
Diosphenol (%)	13.64	10.38	12.88	11.42	11.00	9-14%		
trans-8-Mercapto-p-menthan-3-one (%)	0.50	0.34	0.56	0.58	0.56	0.1-0.4%		
<i>cis</i> -8-Mercapto- <i>p</i> -menthan-3-one (%)	6.18	8.24	7.92	7.68	8.56	1.5-2.5%		

Oil Quality

- Analysis shows that oil samples are pure A. betulina (Diosphenol high)
- High pulegone concentrations is an indication of plant material age and not hybridization in this case since no cis/trans-8-Acetylthio-p-mentan-3one isomers were detected and the ratio of trans to cis-8-Mercapto-p-menthan-3-one isomers was low
- Some replicates in treatment 2 (EC=1.1 mS.cm⁻¹) had the same characteristics of oil extracted from an adult plant

Oil Quality (19 months)

	EC (mS.cm ⁻¹)						
Chemical component	0.8	1.1	1.4	1.7	2.0	Accepted range	Harvest time
Isomenthone (%)	14.20	14.76	13.48	14.10	13.36	15-25%	10 months
	21.60	15.40	22.00	20.50	31.00		19 months
Pulegone (%)	6.62	12.48	9.26	9.64	11.82	0-5%	10 months
	6.10	7.50	10.20	9.50	8.80		19 months
psi-diosphenol (%)	11.48	7.90	10.00	7.42	8.84	8-13%	10 months
	9.40	12.50	5.80	8.30	3.90		19 months
Diosphenol (%)	13.64	10.38	12.88	11.42	11.00	9-14%	10 months
X X	10.90	14.00	6.90	10.00	4.30	*	19 months

Oil Quality (19 months)

		E	C (mS.c				
Chemical component	0.8	1.1	1.4	1.7	2.0	Accepted range	Harvest time
trans-8-Mercapto-p-menthan-3-one (%)	0.50	0.34	0.56	0.58	0.56	0.1-0.4%	10 months
	0.40	0.60	0.40	0.40	0.70		19 months
cis-8-Mercapto-p- menthan-3-one (%)	6.18	8.24	7.92	7.68	8.56	1.5-2.5%	10 months
	2.70	3.10	2.80	2.50	5.20	E	19 months

Oil Quality (19 months)

- Diosphenol was lower with isomenthone higher
- Pulegone slightly lower compared to 1st harvest
- 8-Mercapto-*p*-menthan-3-one concentration also lower compared to first harvest, as a result of plants being older or the vegetative growth stage at that specific time
- Some plants died and as a result it seems that the oil reflects a diosphenol vs. isomenthone chemotype
- Genetic variation might be responsible
- Diosphenol chemotypes are known for having a high mortality rate
- Oil yield was higher average 0.85%

Conclusion

- EC levels between 0.8 and 1.1 seems to be optimal in terms of biomass accumulation
- Biomass production was exceptionally high (unexpected)
- The oil quality was acceptable, especially at 0.8 mS.cm⁻¹
- Chemotype variation is problematic
- More detailed studies needed

Future Research

- pH range in progress
- Nutrient ratio
- Phosphorous tolerance (temperature)
- Time of harvesting in greenhouse setup
- Irrigation scheduling
- etc

Acknowledgements

- ASNAPP South Africa
- USAID/RCSA
- Puris Natural Fine Chemicals (Pty) Ltd
- Stellenbosch University
- Alan Harris Buchu Moon